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ABSTRACT  

Rhamm is a hyaluronan (HA) binding protein with limited expression in normal tissues and high 

expression in advanced cancers. Here we show that genetic deletion of Rhamm results in 

defective wound granulation tissue formation/resolution.  Rhamm-/- (Rh-/-) fibroblasts migrate 

more slowly than Wt and fail to resurface >3mm scratch wounds or invade HA-supplemented 

ECM gels.  This defect appears to result from impaired CD44/ERK signaling that results in 

reduced motility speed. In Rhamm-expressing fibroblasts, Rhamm, CD44 and ERK1,2 form 

complexes and both Rhamm and CD44 are necessary for maximal activation of these MAP 

kinases and maximal motility speed.  Rhamm is required to promote cell surface display of 

CD44 and CD44/ERK1,2 co-localization since  Rh-/- fibroblasts exhibit reduced surface CD44, 

reduced ERK/CD44 co-association and aberrant activation/subcellular targeting of ERK1,2. 

Signaling defects and impaired motility are rescued by either expression of mutant active MEK1 

or restoration of cell surface Rhamm (CD168).  These results identify Rhamm as an essential 

regulator of CD44/ERK1,2 motogenic-signaling required for wound repair.      
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INTRODUCTION 

Rhamm is a HA-binding protein that is either not expressed or expressed at low levels in 

normal adult tissues but is highly expressed in aggressive human tumors (Adamia et al., 2005; 

Tammi et al., 2002; Toole, 2004).  Analyses of animal models have confirmed instructive roles 

for Rhamm in tumorigenesis and in other disease processes such as arthritis.  Roles for Rhamm 

in these diseases are consistent with its well-documented in vitro functions in migration and 

proliferation/apoptosis (Turley et al., 2002).  Since migration and proliferation/apoptosis are 

essential functions for morphogenesis and tissue homeostasis, it is surprising that genetic 

deletion of Rhamm does not affect embryogenesis or adult homeostasis.   Indeed, to date, a 

physiological function for Rhamm has remained elusive.   

Rhamm was originally isolated from subconfluent migrating fibroblasts (Turley, 1982) 

and subsequently cloned from mesenchymal progenitor cells (Hardwick et al., 1992).  Antibodies 

prepared against a shed form of Rhamm block HA-stimulated-fibroblast motility, suggesting that 

Rhamm is a cell surface protein that transduces motogenic signaling pathways in culture (Turley 

et al., 2002).  Rhamm-bound HA is detected in cancer cell lines (Adamia et al., 2005) and shown 

to exist also in intracellular compartments/structures including the actin and microtubule 

cytoskeletons, nucleus and cytoplasm (Adamia et al., 2005). These results suggest that Rhamm 

has extracellular and intracellular functions.  However, whether or not Rhamm acts as a cell 

surface receptor for HA became controversial partly because cloning of the human (Crainie et 

al., 1999; Hofmann et al., 1998; Wang et al., 1996) and mouse genes (Hofmann et al., 1998) 

revealed an absence of both a signal peptide required for export through the golgi/ER and 

membrane spanning domain(s) common to most cell surface receptors.  In this and other 

characteristics, Rhamm resembles a group of intracellular proteins (e.g. epimorphin/syntaxin-2, 

autocrine motility factor/phosphoglucose isomerase) that also lack these signature characteristics 

of cell membrane receptors but which are nevertheless found at the cell surface and transmit 

signals across the cell membrane to regulate a number of cellular functions (Nickel, 2005; 

Radisky et al., 2003).  

We have shown that Rhamm expression is high in aggressive fibromatoses (desmoid) 

tumors (Tolg et al., 2003).  We further demonstrated that genetic deletion of Rhamm strongly 

reduced desmoid tumor initiation and invasion in a mutant APC and β-catenin-driven mouse 

model of this mesenchymal tumor.  Fibroproliferative processes such as aggressive fibromatosis 

resemble proliferative/migratory stages of wound healing (Cheon et al., 2002).  The expression 



 4

of Rhamm is modulated during wounding (Lovoorn et al., 1998) and by fibrogenic cytokines 

such as TGF-β (Samuel et al., 1993).  Since factors that regulate fibroblast function play dual 

roles in wound repair and tumorigenesis (Bissell, 2001; Park et al., 2000), we have assessed in 

the current study whether Rhamm is involved in repair of excisional skin wounds using Rh-/- 

mice.  The results show that Rhamm loss results in defects in early phases of skin repair, in 

particular in granulation tissue formation and resolution. This defect is associated with impaired 

migration/motility of fibroblasts and is due to aberrant kinetics of ERK1,2 activation/subcellular 

targeting. 
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RESULTS 

Rhamm expression is required for granulation tissue formation and resolution in skin wounds. 

Rhamm expression increases during repair of excisional wounds on human skin 

xenografts in immune compromised mice (Lovvorn et al., 1998) and following scratch wound of 

smooth muscle cell monolayers in culture (Savani et al., 1995).  In the present study, Rhamm 

expression was followed during the first 7 days after excisional wounding of mouse skin.  RT-

PCR analysis of wounds showed that Rhamm expression was low in uninjured skin (Suppl. Fig. 

Ia).  A marked increase in Rhamm mRNA was obvious one day after injury and expression was 

increased until d ay 3 when mRNA levels began to drop.  By day 7 Rhamm mRNA levels were 

only slightly higher than those observed in uninjured skin.  These results indicate that Rhamm is 

expressed during the early stages of excisional skin wound repair, which include wound 

contraction, re-epithelialization and granulation tissue formation.  We therefore next assessed the 

consequences of Rhamm loss to the integrity of these early processes by photographing wound 

sites and by analyzing serial cross sections cut through wound centers.     

  Wt and Rh-/- wounds both contracted by day 1-3 after injury, but contraction of day 3 

Rh-/- wounds was significantly reduced compared to Wt wounds (Suppl. Fig. Ib).  Differences in 

wound contraction were not detected at later times when wound areas were measured from 

photographs (Suppl. Fig. Ib).  By day 14, Wt and Rh-/- wound sites both appeared resolved at the 

macroscopic level ("unpublished data").  However, when the distance between wound edges was 

measured using tissue sections cut through wound centers, significant reductions in the 

contraction of Rh-/- wounds could be detected at days 1 and 3 but also at day 14  (Suppl. Fig. Ic). 

Since granulation tissue myofibroblasts contribute to wound contraction, since loss of Rhamm 

results in a significant decrease in the thickness of the dermis before injury (Suppl. Fig.IIa) and 

since resolution of Rh-/- dermis was delayed, as indicated by continued fibroplasia and reduced 

differentiation of dermal structures (day 21, Suppl. Fig. IIb), we next focused upon the 

consequences of Rhamm loss on granulation tissue formation/resolution.   

A temporal spatial defect in the formation and resolution of granulation tissue was 

observed in Rh-/- vs. Wt wounds (Fig. 1A, B).  Tenascin-positive granulation tissue was 

abundant in day 3 Wt wounds and began to decrease by day 7 (Fig. 1A).  At day 14, wound 

granulation tissue was largely resolved in  

Wt mice (Fig. 1A, B).  In contrast, the area of tenascin-positive granulation tissue in day 3 and 7 

Rh-/- wounds was significantly smaller than in Wt wounds.  Day 14 wounds of Rh-/- mice were 



 6

still strongly tenascin-positive, although the areas of these regions were highly variable between 

Rh-/- mice (Fig. 1A, B).  Interestingly, the pattern of tenascin staining in day 14 Rh-/- wounds 

was abnormal as the staining was “patchy”, in contrast to day 14 Wt wounds (Fig. 1A).  An 

additional difference in Rh-/- wounds was the transient appearance of a thick layer of 

subcutaneous adipocytes in day 1-3 Rh-/- wounds (Fig. 2A and “unpublished data”). These 

results indicate that a prominent effect of Rhamm deficiency during wound repair is a miscuing 

of signals required for the temporal regulation of granulation tissue formation and resolution.    

Fibroplasia is a particularly prominent feature of granulation tissue in excisional skin 

wounds. The biological activities of fibroblasts and other mesenchymal cells, such as 

myofibroblasts, are key factors in the formation of early granulation tissue architecture (Reid et 

al., 2004).  Robust fibroplasia, as quantified by the density/unit area of granulation tissue 

fibroblasts, was apparent in day 3 Wt wounds and was increased by day 7 (Fig. 2A). 

Myofibroblasts, detected by smooth muscle actin staining, were also abundant in Wt wounds by 

day 7 (Fig. 2B).  Fibroplasia was observed in day3/7 Rh-/- granulation tissue but was blunted 

appreciably in comparison to Wt wounds (Fig. 2A) and there was a significant decrease in the 

number of myofibroblasts in day 7 Rh-/- wounds compared to Wt (Fig. 2B).  Furthermore, Rh-/- 

granulation tissue was confirmed to contain abundant adipocytes, particularly at the wound edge, 

as indicated by the presence of vacuolated cells (Fig. 2A, arrows) which stained strongly with the 

lipophylic dye, BODIPY493/503 (Gocze and Freeman, 1994)  ("unpublished data ").  Rh-/- cells 

explanted from normal skin (day 0) and from day 7 wounds expressed less smooth muscle actin 

and accumulated more lipid than explanted Wt cells (Fig. 2C).  Thus, deletion of Rhamm results 

in lower fibroblast density and aberrant differentiation in Rh-/- granulation tissue.  

A number of factors can affect fibroplasia as granulation tissue forms.  For example, a 

chronic inflammatory response at the wound site is required to initiate fibroplasia and functions 

to provide growth factors and cytokines that attract fibroblasts into the wound site.  These factors 

regulate fibroblast migration, survival and proliferation (O'Leary et al., 2002).  Rhamm regulates 

white cell trafficking in vivo and proliferation/ apoptosis in culture (Adamia et al., 2005; Turley 

et al., 2002).  Surprisingly, in vivo analysis revealed a significantly greater percentage of 

polymorphonuclear cells (cell/field) in Rh-/- day 3 and day 7 granulation tissue (65+6; 40+12) 

compared to Wt (42+8 and 8+1, respectively) suggesting that Rhamm loss results in prolonged 

acute inflammation within excisional wounds.  However, proliferation, as measured by the 

number of murine Ki-67-positive nuclei in granulation tissue, was not significantly different 
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from Wt, nor was the rate of apoptosis significantly different in Rh-/- vs. Wt wounds when 

measured by ApopTag staining ("unpublished data").  While these data do not rule out a role for 

fibroblast proliferation/apoptosis in the blunted fibroplasia observed in Rh-/- wounds in vivo, 

they suggest that these are not dominant factors.  

Rhamm expression is required to sustain ERK1,2 activation during granulation tissue formation 

in vivo and in fibroblasts responding to growth factors in culture.  

Fibroblast migration also contributes to fibroplasia and requires appropriate temporal 

regulation of signaling pathways such as ERK1,2, which provide cues for promoting and 

sustaining migration/invasion (Krueger et al., 2001). Furthermore, these MAP kinases have been 

implicated in mesenchymal differentiation into adipocytes, the most prominent being ERK1 

(Bost et al., 2005). Since we have shown that Rhamm associates with ERK1 in fibroblasts and 

that this association is required for PDGF-BB stimulated ERK1,2 activation (Zhang et al., 1998), 

we hypothesized  that the activity of these MAP kinases may be deficient in Rh-/- wound 

granulation tissue and contribute to aberrant fibroblast migration/differentiation (Hornberg et al., 

2005).   Wt granulation tissue fibroblasts exhibited strong staining for the active forms of these 

kinases, as assessed with anti-phospho-ERK1,2 antibodies, at day 3 after wounding (Fig. 3). At 

this time, levels of phospho-ERK1,2 were also similar for Rh-/- vs. Wt granulation tissue, when 

standardized against total ERK1,2 levels (Fig. 3, graph).  Staining intensity for phospho-ERK1,2 

in Wt granulation tissue fibroblasts increased 6-fold by day 7 and did not drop significantly until 

day 13, whereas staining intensity of phospho-ERK1,2 had prematurely decreased in Rh-/- 

granulation tissue by day 7 (Fig. 3). These changes in active ERK1,2 of Rh-/- vs. Wt granulation 

tissue fibroblasts were not due to decreases in total ERK1,2 protein levels since immunoblot 

analyses revealed  that Rh-/- fibroblasts expressed similar amounts of ERK1,2 protein compared 

to Wt fibroblasts in vivo ("unpublished data"). These results indicate that ERK1,2 activity in Rh-

/- granulation tissue fibroblasts is aberrant and may contribute to the miscuing of granulation 

tissue formation/resolution of Rh-/- excisional wounds.   

To determine whether the aberrant ERK1,2 activity observed in Rh-/- granulation tissue 

fibroblasts in vivo is a cell autonomous or micro-environmental defect, we quantified the 

response of isolated Rh-/- vs. RhFL-rescued Rh-/- fibroblasts to serum (FCS) (Fig. 4). ELISA 

analysis of active (phospho)-ERK1,2 revealed that both RhFL-rescued and Rh-/- fibroblasts 

activated ERK1,2 in response to serum (Fig. 4A) and to PDGF (“unpublished data”) but activity 
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was slightly less and declined more rapidly in Rh-/- fibroblasts (Fig. 4A).  Western blots 

confirmed these results (Fig. 4B).    

Confocal analysis showed that both RhFL-rescued and Rh-/- fibroblasts activate and target 

ERK1,2 to the cell nucleus (Fig. 4C).  However, significantly less activated ERK1,2 accumulated 

in the cell nucleus in a 10-60 min exposure to serum than RhFL-rescued counterparts (Fig. 4C).   

Importantly, very little activated ERK1,2 accumulated at the membrane of Rh-/- cell processes 

while these MAP kinases were clearly activated and targeted to cellular processes in RhFL-

rescued fibroblasts or in Wt fibroblasts (Fig. 4C and “unpublished data”).  These results suggest 

that Rhamm is required both for sustaining ERK1,2 activity in different subcellular 

compartments and for the appropriate temporal regulation of trafficking active ERK1,2, both of 

which could affect motility and differentiation (Hornberg et al., 2005).     

Rhamm expression is required for fibroblast migration and invasion in culture assays. 

To assess whether or not the above ERK1,2 activation/targeting deficiencies in Rh-/- 

fibroblasts result in a migration defect, the motogenic behaviour of Rh-/- and Wt fibroblasts were 

compared using scratch wound and 3D collagen gel assays designed to mimic aspects of 

migration within the wound microenvironment (Reid et al., 2004).  Significantly fewer Rh-/- 

than Wt fibroblasts migrated across 3mm scratch wounds in culture (Fig. 5A), as quantified both 

by the number of fibroblasts present in the wound gap and by time-lapse cinemicrography of 

fibroblasts migrating from the wound edge into the wound.  A similar difference in migration 

was also exhibited when comparing Rh-/- to RhFL-rescued fibroblasts  (“unpublished data”).  

Vector analysis of time-lapse wound images revealed that the motility speed of Rh-/- fibroblasts 

was less than Wt (Fig. 5A). These results indicate that loss of Rhamm expression results in an 

inherent migration defect related to a reduced ability of fibroblasts to orient and locomote rapidly  

towards haptotactic cues.   

The invasive properties of Rh-/- vs. Wt fibroblasts were also compared using 3D collagen 

type I gels.  Gels were constructed with central plugs composed of collagen type I, PDGF-BB 

and HA, surrounded by fibroblasts enmeshed in the surrounding collagen gel (Fig. 5B).  

Migration of primary Rh-/- dermal fibroblasts into the central collagen gel plug containing 

PDGF-BB and HA was reduced by almost 90% compared to that of litter-matched Wt fibroblasts 

(Fig. 5B) confirming that Rh-/- fibroblasts exhibited intrinsic and severe defects in haptotaxis 

and invasion in vitro.   
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Rhamm, CD44 and ERK1,2 form complexes and these HA receptors are required for activating 

ERK1,2 

We have recently shown that Rhamm, CD44 and ERK1,2 form complexes required for 

motility of aggressive breast cancer cells (Fard et al. 2006).  To begin to identify the motogenic 

mechanisms that are deficient in Rh-/- fibroblasts, we therefore first assessed the co-association 

of Rhamm/CD44/ERK1,2 in Rhamm-expressing fibroblasts and the dependence of these cells on 

Rhamm and CD44 for activating ERK1,2.  The standard form of CD44 is expressed in equivilant 

amounts in Rhamm-expressing and Rh-/- fibroblasts (Fig. 6A).  Pull-down assays using 

recombinant Rhamm-Sepharose demonstrated the ability of Rhamm, CD44 and ERK1,2 to co-

associate (Fig. 6B).   Confocal analysis showed co-localization of Rhamm and CD44 in ends of  

cell processes and a subset of CD44-positive perinuclear vesicles in RhammFL-rescued 

fibroblasts (Fig. 6C). CD44 and active ERK1,2 also co-localized in cell processes and in a subset 

of CD44-positive perinuclear vesicles (Fig. 6B).  Both CD44 and cell surface Rhamm are 

required for activation of ERK1,2 and trafficking to the cell nucleus in response to serum since 

anti-CD44 and anti-Rhamm antibodies significantly reduced the intensity of nuclear phospho-

ERK1,2 (Fig. 7A).   

Rhamm, CD44 and ERK1,2 are required for motogenic responses to serum and HA 

The motility of RhFL-rescued fibroblasts responding to FCS stimulation required cell surface 

Rhamm, cell surface CD44 and active ERK1,2 since anti-Rhamm as well as anti-CD44 

antibodies blocked motility as did the MEK1 inhibitors UO126 (Fig. 7B) and PD98059 (data not 

shown).  Furthermore, in contrast to RhFL-rescued fibroblasts, Rh-/- fibroblast motility was not 

significantly affected by Rhamm or CD44 antibodies, or by MEK1 inhibitors (Fig. 7B, dotted 

line).  Since signaling through CD44 and ERK1,2 have previously been shown to be required for 

motogenic responses to HA (Robertson et al., 2006),  motility speed Rhamm-expressing vs. Rh-

/- fibroblasts stimulated by HA was also assessed. To render non-transformed cells sensitive to 

HA, fibroblasts can be pre-treated with PMA, which is required to activate protein kinase C-

dependent processes, permitting motogenic responses to HA (Hall et al., 2001).  A mixture of 

high molecular weight HA and oligosaccharides significantly promoted random motility of Wt 

fibroblasts when PMA was present compared to PMA-treated cells alone (Fig. 7C).   In contrast, 

the HA formulation did not enhance Rh-/- fibroblast random motility. HA-mediated motility of 

RhFL-rescued fibroblasts required cell surface Rhamm since anti-Rhamm antibodies blocked the 

increase in motility (Fig. 7C).  
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Rhamm promotes cell surface display of CD44 and co-distribution of CD44 and ERK1,2. 

 The inability of Rh-/- fibroblasts to increase random motility particularly in response to HA was 

puzzling since both genotypes produce equivalent amounts of total cellular standard CD44 

protein as detected in Western blots (Fig. 6A).  We therefore first assessed whether CD44 protein 

localization was altered in Rh-/- fibroblasts.  Confocal microcopy of CD44 immunofluorescence 

suggest that loss of Rhamm resulted in fewer intracellular CD44-positive vesicles (Fig. 6A).  

Since aberrant trafficking of endocytosed surface proteins can result in altered display at the cell 

surface (Robertson et al., 2006), we next assessed whether or not Rhamm expression influenced 

the appearance of cell surface CD44.  Cell surface display of CD44 was reduced by the loss of 

Rhamm, as shown by live cell immunofluoresence (Fig. 8A). Furthermore, both inhibition of 

MEK1 using either UO126 (Fig. 8A) or PD098059 (“unpublished data”), and cell surface 

Rhamm, using anti-Rhamm antibodies (Fig. 8A), reduced surface display of CD44.  These 

reagents were not likely to cause degradation of CD44 protein since increased intracellular 

vesicles were observed with confocal analysis in treated fibroblasts (“unpublished data”).   

Rhamm expression, including cell surface Rhamm, also regulated the co-association of CD44 

with ERK1,2 (Fig. 8B).  ERK1,2 activity has previously been reported to associate with and be 

required for non-clathrin coated vesicle trafficking of cell surface proteins. Furthermore 

inhibition of ERK1,2 activity concommitently promoted accumulation of intracellular vesicles 

and reduced cell surface display of proteins such as HLA  (Robertson et al., 2006).  Our results 

are consistent with a similar role for ERK1,2 activity in trafficking CD44 to the cell surface and 

suggest a novel mechanism by which ERK1,2 may regulate cell motility.  Since Rh-/- cells 

clearly exhibited an ERK1,2 activation defect, we next assessed whether or not restoration of 

ERK1,2 activity in the absence of Rhamm is sufficient to restore cell surface CD44 display and 

rescue motility.  

Expression of mutant active Mek1 rescues the migration defect of Rhamm-/- fibroblasts. 

Expression of mutant-active Mek1 restored the ability of Rh-/- fibroblasts to sustain 

activation of ERK1,2 in response to FCS (Fig. 9A, B) and this effect was not enhanced further by 

co-expression of RhFL (Fig. 9A).  As well, activated Mek1 in Rh-/- fibroblasts restored migration 

in scratch wound assays (“unpublished data”), and significantly promoted motility speed in the 

absence of Rhamm expression in response to FCS (Fig. 9C).    Expression of mutant-active 

Mek1 in Rh-/- fibroblasts also promoted cell surface display of CD44 (Fig. 9C).  These results 

suggest that Rhamm and Mek1 act on the same CD44-regulated motogenic signaling pathway 
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since Mek1 can compensate for Rhamm in restoring motile behavior.  Since Rhamm occurs 

within intracellular compartments as well as on the cell surface (Turley et al., 2002), we next 

assessed which Rhamm form is required and/or sufficient for restoring ERK1,2 activation, CD44 

cell surface display and motility speed. 

Cell surface Rhamm is sufficient to restore motility, CD44 surface display in Rh-/- fibroblasts 

and to partially restore ERK1,2 activity 

The ability of anti-Rhamm antibodies to reduce Wt and Rhamm-rescued fibroblast motility, 

ERK1,2 activity, cell surface display of CD44 and the co-association of CD44 with ERK1,2 

suggested that this form of Rhamm plays a key role in motogenic signaling.  Furthermore, the 

co-association of Rhamm with CD44 provided a testable mechanism by which cell surface 

Rhamm, which does contain membrane spanning sequence, could affect activation of signaling 

cascades such as Ras-ERK1,2 (Toole, 2004; Turley et al., 2002).  However, use of blocking 

antibodies does not permit assessement of the relative roles of cell surface vs. intracellular 

Rhamm and these studies did not exclude a role for intracellular Rhamm forms in the above 

motogenic processes.    To assess the consequences of cell surface Rhamm, alone and in the 

absence of intracellular Rhamm proteins, recombinant Rhamm protein covalently linked to 

Sepharose beads were added to Rh-/- fibroblasts and motility speed was quantified using 

timelapse micrography. Rhamm-beads significantly stimulated motility speed but only of Rh-/- 

fibroblasts in contact with beads and not of those that lacked bead contact (Fig. 10A).  

Recombinant GST-beads had no effect on the motility speed of Rh-/- fibroblasts whether or not 

these beads contacted cells. Both anti-CD44 (Fig. 10A) and anti-Rhamm antibodies 

(“unpublished data”) significantly blocked recombinant Rhamm-bead stimulated motility of Rh-

/- fibroblasts and fibroblasts deficient in both Rhamm and CD44 did not increase their motility in 

response to these beads (Fig. 10A).  CD44 surface display was also dramatically increased in Rh-

/- fibroblasts contacting Rhamm-beads (Fig. 8A).    These results indicate that cell surface 

Rhamm is sufficient for CD44 receptor display and promotion of motility speed:  intracellular 

Rhamm is not required for these functions.   

To begin to assess the mechanisms by which cell surface Rhamm promotes the above 

motogenic signaling pathway, we first determined whether or not Rhamm-bead stimulated 

motility requires ERK1,2.  The Mek1 inhibitor UO126 reduced motility speed of Rh-/- 

fibroblasts contacting Rhamm-beads (Fig. 10A).  Furthermore, recombinant Rhamm beads also 

significantly stimulated ERK1,2 activation and translocation to the cell nucleus in Rh-/- 
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fibroblasts (Fig. 10B).  Activity was not as high as that of Rhamm-rescued fibroblasts suggesting 

a possible role for intracellular Rhamm forms in the degree of ERK1,2 activation (Toole, 2004; 

Turley et al., 2002).  Most importantly, Rhamm-bead induced activation of ERK1,2 as well as 

motility was blocked by anti-CD44 antibodies (Fig. 10A,B) implicating cell surface 

Rhamm/CD44 interactions in jointly regulating ERK1,2 activity required for increasing cell 

surface display of CD44 and activating motogenic signaling pathways.     
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DISCUSSION 

This study identifies Rhamm as a fibrogenic factor that is required for appropriate timing 

and spatial regulation of granulation tissue formation and resolution.  A major consequence of 

Rhamm loss on granulation tissue formation/resolution is reduced/delayed fibroplasia associated 

with sparse fibroblast density, enhanced neutrophil accumulation and aberrant mesenchymal 

differentiation as indicated by reduced myofibroblast conversion and increased adipocyte 

accumulation within wound granulation tissue.  Our studies also suggest that an underlying 

signaling defect associated with these repair deficiencies in Rh-/- wounds is de-regulated 

ERK1,2 activation that impacts upon signaling pathways promoting fibroblast migration and that 

affect mesenchymal cell differentiation.  This conclusion is supported by the demonstration that 

Rh-/- fibroblasts retain their inability to appropriately activate ERK1,2 in culture, exhibit 

migration defects as measured by several locomotion assays, and that these defects are rescued 

by expression of mutant active Mek1, an ERK1,2 kinase activator.  Our results further reveal an 

autocrine mechanism by which cell surface Rhamm promotes motility.   This Rhamm protein 

form promotes ERK1,2 activation via a direct or indirect association with CD44, which in turn is 

required for maintaining cell surface display of CD44.  ERK1,2 is acting downstream of cell 

surface Rhamm in this function since expression of mutant active Mek1 is sufficient to maintain 

cell surface CD44, activate ERK1,2 and restore motility in the absence of Rhamm expression. 

This motogenic mechanism is apparently required for both growth factor and HA-mediated 

motility. These findings identify for the first time a mechanism by which a non-integral Rhamm 

protein can activate intracellular signaling cascades and identify a novel mechanism by which 

ERK1,2 can promote motility.    

    ERK1 and 2 are closely related MAP kinase isoforms that can perform different 

physiological functions.  For example, ERK2 is required for normal embryogenesis (Yao et al., 

2003), whereas ERK1 plays more subtle and specific roles in adult physiology including 

adipogenesis (Bost et al., 2005).  Both MAP kinases are activated by Mek1 or 2 and regulate 

signaling pathways that control cell motility, invasion and cytoskeleton remodeling during 

migration in culture.  Our results show that these defects of Rh-/- fibroblasts result from an 

inability to sustain and maximally activate ERK1,2  following growth factor stimulation.  These 

results are consistent with our previous evidence that cell surface Rhamm is required for PDGF-

BB stimulated ERK1,2 activity in mesenchymal stem cells and for promoting migration by 

regulating signaling through upstream activators of ERK1,2 including HA, Src, Ras and FAK 
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(Hall et al., 1996; Hall et al., 1995; Turley et al., 2002).  Others have also documented a role for 

cell surface Rhamm in activating signaling cascades that regulate motility and that directly or 

indirectly affect ERK1,2 activation (Aitken and Bagl, 2001; Goueffic et al., 2006; Lokeshwar and 

Selzer, 2000). 

Although cell surface Rhamm can promote ERK1,2 activity to levels sufficient to sustain 

motility, it did not activate these MAP kinases to the levels achieved in the presence of both cell 

surface and intracellular Rhamm forms .  Furthermore, although ERK1,2 activated in response to 

cell surface Rhamm translocated to the cell nucleus, these MAP kinases did not accumulate in 

the cell processes as was observed when intracellular Rhamm was also present.  These results 

indirectly implicate intracellular Rhamm in the regulation of aspects of ERK1,2 

activation/compartmentalization.   These deficiencies did not affect the ability of cell surface 

Rhamm to promote motility speed but might affect other functions associated with ERK1,2 

activity such as invasion and mitosis, neither of which were rescued by cell surface Rhamm 

alone (“unpublished data”). The consequences of ERK1,2 signaling to its functions in cell 

differentiation, migration and proliferation depends upon activation kinetics and subcellular 

compartmentalization (Colucci-D'Amato et al., 2003; Hendriks et al., 2005; Hornberg et al., 

2005).  These factors are determined by receptor dimerization, receptor internalization, “cross-

talk” with other receptors, association of ERK1,2 with adaptor proteins, and activation of other 

kinases or phosphatases that modify ERK1,2 activity (Colucci-D'Amato et al., 2003; Hornberg et 

al., 2005). The possibility that cell surface Rhamm and intracellular Rhamm may differentially 

affect the activation levels and subcellular targeting of ERK1,2, which would have consequences 

to  both transcription of motility- and invasion-related genes and phosphorylation of intracellular 

substrates that are involved in cell migration/invasion (Huang et al., 2004), merit further 

investigation.   

ERK1,2 have previously been shown to regulate motility by both transcription and post-

translational mechanisms.  For example, initiation and early phases of migration during wound 

repair do not appear to require transcription (Providence and Higgins, 2004) but rather involve 

phosphorylation of predominantly cytoskeleton-associated (Helfman and Pawlak, 2005; Huang 

et al., 2004; Simoes and Fierro, 2005).  Our results also identify a role for ERK1,2 activity in 

sustaining cell surface display of CD44, an integral membrane protein required for motility in 

response to growth factors and HA (Toole, 2004).  ERK1,2 has previously been shown to 

promote recycling of clathrin-coated negative early endosomes back to the cell surface, a 
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pathway associated with recycling of B1 integrins and E-cadherin (Robertson et al., 2006).  A 

similar ERK-regulated recycling event may be responsible for maintaining CD44 at the cell 

surface.  

 It is curious that motogenic responses to PDGF-BB or FCS are reduced but are not 

completely ablated in the absence of Rhamm while responses to HA are blocked.  These results 

suggest a wider repertoire of mechanisms for regulating growth factor vs. HA mediated motility.      

The molecular mechanisms by which polysaccharides in general and HA in particular regulate 

physiological processes such cell migration during tissue repair are not yet well understood 

(Adamia et al., 2005; Toole, 2004). However, much like the closely related heparan sulfate, HA 

can impact signaling through associations with growth factor receptors involved in repair, 

including TGF-βR, and PDGFR, through receptors such as CD44 and Rhamm (Turley et al., 

2002).   One way in which HA has been shown to affect signaling through growth factors is by 

localizing growth factor receptors to specific cell surface membrane compartments.  For 

example, HA and CD44 promote localization of fibrogenic receptors such as TGF-βR into lipid-

rich rafts (Ito et al., 2004).  This type of compartmentalization impacts the rate of internalization 

and intracellular trafficking of receptor/signaling complexes to endosomes and lysosomes for 

inactivation vs. recycling back to the cell surface.  These parameters, in turn, have an effect on 

the kinetics of receptor activation including receptor-mediated activation of downstream 

effectors such as ERK1,2 (Hendriks et al., 2005) and likely speed of motility.  These functions 

may affect a subset of growth factor receptors and have subtle but essential consequences to 

wound repair including promotion of cell motility speed, a factor in timely wound repair.  

CD44 and Rhamm have overlapping functions in regulating migration events and 

Rhamm can compensate for loss of CD44 in aspects of splenocyte migration into arthritic joints 

(Nedvetzki et al., 2004).  These and other studies (Goueffic et al., 2006; Turley et al., 1993) 

suggest that Rhamm can promote cell motility independently of CD44.  Very likely in these 

instances cell surface Rhamm associates with other adhesion receptors involved in cell motility 

and partnering may depend upon expression and cell surface display levels of these receptors 

which will vary with disease, cell type and temporal stage of wound repair.   

Rhamm belongs to a group of proteins that are predominantly intracellular but which can 

be exported to the cell surface via unconventional transport mechanisms that do not involve the 

export through the golgi/endoplasmic reticulum (Nickel, 2005).  We show that cell surface 

Rhamm is displayed in culture after injury and our results have begun to clarify functions for cell 
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surface Rhamm vs. intracellular Rhamm protein forms.  Although we did not define a role for 

intracellular Rhamm in cell motility, indirect evidence suggests that it plays a role in mitotic 

events in culture since cell surface Rhamm did not rescue the abnormal mitotic events observed 

during timelapse cinemicraphical analysis of Rh-/- fibroblasts.  We, and others, have previously 

reported a role for Rhamm in regulating proliferation and in particular for progression through 

G2M of the cell cycle (Maxwell et al., 2005; Maxwell et al., 2003; Mohapatra et al., 1996; Tolg 

et al., 2003).  Intracellular Rhamm proteins have been shown to associate with the interphase 

actin and microtubule cytoskeleton and to occur within the cell nucleus (Adamia et al., 2005; 

Turley et al., 2002).  In particular, Rhamm protein associates with centrosomes and mitotic 

spindle microtubules (Evanko et al., 2004; Maxwell et al., 2003), and since microinjection of 

Rhamm antibody results in aberrant spindles and mitosis (Maxwell et al., 2003), it is likely that 

intracellular Rhamm forms play a role in mitosis.     Nevertheless, our current data do not 

provide support for an essential role of Rhamm in mitotic spindle formation or cell cycle 

regulation during wound repair in dermal fibroblasts in vivo, as judged by the lack of detectable 

differences in proliferation or apoptotic indices within Rh-/- vs. litter-matched Wt wound sites. 

However, the slightly disorganized migration of Rhamm-/- fibroblasts from scratch wound 

assays on tissue culture plastic is consistent with a possible centrosomal defect that could 

contribute to aberrant migration (Watanabe et al., 2005) and merits further experimentation.  A 

role for Rhamm in collagen contraction has also been controversial (Bagli et al., 1999; Travis et 

al., 2001).  Unexpectedly, however, our studies have revealed a role for Rhamm in 

recruitment/differentiation of myofibroblasts and contraction of the wound bed.  As is 

increasingly reported and recognized (Bissell et al., 2003), both of these results emphasize the 

importance of context and the microenvironment in regulating cell signaling.  Thus, data 

obtained in culture, especially on two-dimensional (2D) substrata, need to be confirmed in vivo 

or at least in relevant microenvironments.    

  Collectively, our results are consistent with the conclusion that Rhamm is a fibrogenic 

factor expressed predominantly in cells that do not necessarily form parenchymal units. Cell 

surface Rhamm is required for promoting migration at least in part by regulating cell surface 

CD44 display via a CD44 dependent activation of ERK1,2 kinases. These in culture and  

physiological functions may provide a basis for understanding and further dissecting the 

importance of Rhamm hyperexpression in the invasion and metastasis of malignant tumors, as 

well as other disease processes. 
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MATERIALS AND METHODS 

Reagents  

Medical grade HA prepared from bacterial fermentation was the kind gift of Skye 

Pharma (London UK) and was free of detectable proteins, DNA or endotoxins (Filion and 

Phillips, 2001). The average molecular weight range and polydispersity of HA was 276.7kDa 

and 1.221kDa, respectively.  HA oligosaccharides (MWavg 10kDa) were a kind gift of Dr. F. 

Winnik (University of Montreal, QC) and were prepared by partial digestion with testicular 

hyaluronidase and purification by gel filtration.  Human plasma fibronectin (BRL) , Ki67 (pAb, 

DAKO), α- smooth muscle actin (pAb, Santa Cruz), tenascin (pAb, Chemicon) and vimentin 

(pAb, Santa Cruz) antibodies and Oregon Green phalloidin (Molecular Probes) were used 

according to the manufacturer’s instructions. Function blocking, affinity purified anti-Rhamm 

antibodies (Zymed) were confirmed to be specific by western blot and immunofluorescence 

assays of Rh-/- fibroblasts.  Anti-CD44 antibodies (mAb, KM114 and IM7, Pharmingen) were 

confirmed to be specific using western and immunofluorescence analyses of CD44-/- dermal 

fibroblasts.  Phospho-ERK1,2 antibodies (pAb, Cell Signaling Technology) were used for 

immunohistochemistry and immunofluorescence and phospho-ERK1,2 (mAb, Sigma) and pan-

ERK1 antibodies (pAb, Santa Cruz, ) were used for western blot analyses.  Secondary antibodies 

were anti-rabbit Alexa 555 (Molecular Probes), Texas-Red or FITC labeled goat anti-mouse/goat 

anti-rabbit (Jackson laboratories), HRP-goat anti-mouse (Biorad), HRP-goat anti-rabbit 

(Pharmingen), HRP-rabbit anti-goat (Santa Cruz). All antibodies were used according to 

manufacturer’s instructions. ABC staining system (Santa Cruz) was used for 

immunohistochemistry and ApoTag peroxidase in situ apoptosis detection kit (Chemicon) was 

used for quantification of apoptosis. FACE ERK1/2 ELISA kit (Active Motif) was used 

according to manufacturer's instructions to quantify ERK1/2 activation in response to FCS in Rh-

/-, RhFL-, Mek1- and Mek1/RhFL-rescued cell lines. Mounting medium for immunofluorescence 

contained DAPI (Vectashield) while Cytoseal 60 (Richard-Allan Scientific) was used for 

mounting of tissue sections.  The Mek1 inhibitors, PD98059 and U0126 (50μM and 10μM 

respectively, Biosciences), were used according to manufacturer’s instructions. BODIPY 

493/503 was purchased from Invitrogen and was used according to manufacturer's instructions. 

Rh-/- mice; mouse embryonic fibroblasts and dermal fibroblasts 

All animal experiments were performed in accordance with regulations of the animal use 

subcommittee at the University of Western Ontario, London, Ontario, Canada. The preparation 
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of Rh-/- mice and mouse embryonic fibroblasts (MEF), as well as genotyping of mice and 

fibroblasts, have been described (Tolg et al., 2003). CD44-/- mice have been described (Schmits 

et al , 1997). For the generation of Rh/CD44-/- double knock-out mice, heterozygous Rh+/- mice 

were crossed with homozygous CD44-/- mice resulting in Rh/CD44+/- mice. Mating between 

these Rh/CD44+/- heterozygous mice resulted in Rh/CD44-/- homozygous mice, which were 

identified by PCR as previously described (Schmits et al., 1997; Tolg et al., 2003). Dermal 

fibroblasts were isolated from explanted skin from newborn mice. For the isolation of cells from 

granulation tissue, wound punches were cut into small pieces and cultured with the dermal side 

facing down in complete cell culture medium (10% FCS, DMEM, antibiotic-antimycotic).  

RT-PCR analysis of Rhamm and CD44 mRNA  

Rhamm mRNA was amplified as previously described (Tolg et al., 2003) and PCR 

products were detected by Southern analysis using Rhamm exons 14-16 as a radioactive probe.  

CD44 mRNA was amplified as previously reported (Schmits et al., 1997).  Amplification of β-

actin mRNA was used as a loading control (Tolg et al., 2003).   

Western  blots  

Western analyses of CD44, phospho-ERK1,2 and total ERK1,2 proteins were performed 

as described (Schmits et al., 1997; Tolg et al., 2003; Zhang et al., 1998).  Densitometry was 

performed using Image Quant 5.1 software (Molecular Dynamics). 

Recombinant protein production and in vitro pulldown assays   
Recombinant Rhamm-GST fusion protein (murine Rhamm variant 4, 72kDa isoform) 

was expressed and purified as described previously (Mohapatra reference).  Briefly, Rhamm-

GST was expressed in bacteria and purified using Glutathione-sepharose beads (Amersham).  

Rhamm was released by thrombin digest (Amersham, as per manufacturer’s guidelines), which 

cleaved Rhamm off of the GST tag.  The beads were washed in PBS/1% Triton X-100.  After 

several washes, a large amount of cleaved recombinant Rhamm protein remains associated with 

the glutathione sepharose beads and does not dissociate from the beads unless boiled in SDS.  

Control GST recombinant protein associated was also expressed and purified as described 

previously. 

For the in vitro pull-down assays, recombinant Rhamm or recombinant GST beads were 

incubated with 500μg of whole RhFL-rescued cell lysate (prepared as described above) overnight 

at 4oC on a nutator shaker.  After overnight incubation beads were spun down and washed with 

cold lysis buffer.  Proteins associated with beads were then boiled in SDS containing sample 
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buffer and were separated on a 10% SDS-PAGE, as described above).  CD44s detection via 

western blot was done as described above. 

Cell culture and transfection 

Cell culture medium and culture conditions were described previously (Tolg et al., 2003; 

Zhang et al., 1998).  PDGF-BB (25ng/ml), HA (500ng/ml-1mg/ml) or FCS (10%) were added to 

24hrs serum-starved, 50% sub-confluent fibroblasts on fibronectin (25µg/ml)-coated dishes (Hall 

et al., 1996; Zhang et al., 1998).  To obtain a response to HA, cells were pre-treated with 5nM 

PMA (Sigma) (Hall et al., 2001).  For antibody blocking experiments cells were pre-incubated 

for 30 min with serum-free defined medium containing 10 μg/ml function blocking anti-Rhamm 

AB or control rabbit IgG prior to the addition of 10% FCS. Immortalized Rh-/- cells were 

transfected with RhFL murine Rhamm and/or mutant active Mek1 (kind gift of N. Ahn, U. 

Colorado, Boulder) in the presence of Lipofectamine Plus (Invitrogen) as described previously 

(Zhang et al., 1998).  All transfectants were selected in G418 (1-5mg/ml for 2-3 weeks).  

Excisional wounds and histology 

Wt and Rh-/- mice (3-18 month old) were anaesthetized by Halothane inhalation.  Two 

full thickness wounds were placed on denuded back skin using a 4mm metal punch. Mice were 

housed in individual cages for the experimental period. Wounds were harvested at varying times 

using a 8mm metal punch from similar locations on the backs of mice of the same gender and 

age.  Harvested wounds were fixed overnight in 4% paraformaldehyde and paraffin embedded as 

described (Tolg et al., 2003).  Numbered serial sections were cut perpendicular to the wound 

edge starting at the wound center. The first and last sections were stained with Masson's 

trichrome and non-stained sections were used for immunohistochemistry. To ensure that serial 

sections were cut starting at the wound center, wound samples were cut in half through the 

wound center prior to embedding   

In total, five experimental series were performed. In each experiment, wounds were 

harvested at four different time points (1, 3, 7, and 14 days after wounding). For each time point, 

four age and gender matched mice were used (two Rh-/- and two Wt mice).  In total, for each 

time point, ten Rh-/- and ten Wt mice were analyzed.    

Immunohistochemistry of tissue sections and immunofluorescence of cultured cells  

Tissue sections were stained for collagen (Masson's trichrome), α-smooth muscle actin, 

vimentin and tenascin following manufacturer's recommendations.  Staining was quantified after 

counter-staining with Harris Hematoxylin (EM SCIENCE) and mounting in Cytoseal 60 
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(Tullberg-Reinert and Jundt, 1999).  Immunofluorescence of phospho-ERK1,2 was done as 

previously published (Avizienyte et al., 2004). For detection of CD44 and Rhamm the protocol 

for phospho-ERK1,2 staining was followed with the exception that the primary ab was incubated 

over night at 4For the detection of droplets of neutral lipids, paraformaldehyde-fixed cells were 

stained with BODIPY 493/503 (25ug/ml) (Gocze and Freeman, 1994). Actin stress fibers were 

detected with Oregon-green phalloidin. 

In vitro wound and invasion assays  

Confluent cell monolayers on fibronectin coated dishes were serum starved overnight 

Scratch wounds (1 or 3 mm) were made using sized cell scrapers, then covered with medium 

containing 10% FCS or 25ng/ml PDGF-BB for 24-48hrs.  Monolayers were fixed (3% 

paraformaldehyde), washed, stained with methylene blue (0.1% in methanol) then photographed 

using a Nikon inverted Eclipse TE 300 microscope.  Images were analyzed for cell number per 

unit area of wound gap using Simple PCI (Compix).  For 3D assays, collagen (Vitrogen100, 

Cohesion) or Matrigel (BD) gels were prepared according to manufacturers instructions. Plastic 

inserts were placed in the gel center. Fibroblasts were (5x105cells/ml) added to the outer gel 

ECM solution. After 24-48hrs, plastic inserts were removed and the cell free space was filled 

with collagen containing 25ng/ml PDGF-BB, 100μg/ml HA, and 25ng/ml fibronectin. Gels were 

fixed and analyzed 72hrs later for cell numbers/unit area. 

Microinjections 

RhFl-rescued and Rh-/- fibroblasts were plated on fibronectin-coated glass coverslips in 

DMEM + 10% FCS. Approximately 2-4 hrs after plating, when cells had adhered, medium was 

replaced with defined DMEM containing transferrin and insulin.  Cells were microinjected with 

function blocking anti-Rhamm AB or control rabbit IgG that had been concentrated to 3mg/ml in 

PBS using Microcon Centrifugal Filter Devices (Millipore). The microinjection was performed 

on a Leitz Labovert FS equipped with a micoinjector. Glass capillary needles (World Precision 

Instruments, Sarasota, FL) were prepared with a Kopf vertical pipette puller. Following Rhamm 

AB and control IgG miroinjection into the cell cytoplasm, cells were cultured for another 30 min 

in defined medium before they were stimulated with 10% FCS for either 10 or 30 min. 

Immunofluorescence for phospho-ERK1,2 and CD44 was performed and monitored with 

confocal microscopy as described above.  
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Time-lapse cinemicrography 

For experiments assessing the motogenic effects of HA and PDGF-BB, cells were plated 

onto fibronectin-coated tissue culture flasks at 50% sub-confluence overnight then serum-starved 

for 24hrs.  PDGF-BB or HA were added prior to filming as described (Hall et al., 2001; Zhang et 

al., 1998). For quantifying the effect of FCS, fibroblasts were plated at 50% sub-confluence 

overnight onto tissue culture dishes that had been pre-coated with serum proteins.  FCS was 

added after a 24hr period of serum-starvation and cells were filmed as above.   

Image acquisition, image enhancement, image analysis and statistical analysis s  

Masson's trichrome and eosin/hematoxylin stained tissue sections as well as vimentin,  

tenascin and phospho-ERK1,2 stained tissue section images were taken with air objectives (4X, 

NA=0.16; 20X NA=0.7) using an Olympus AX70 Provis microscope equipped with a Cooke 

SensiCam color camera (CCD Imaging) and Image Pro Plus Version 4.5.1.2.9 software (Media 

Cybernetics, Inc.).   For quantification of pERK1,2 staining, images were saved as tiff files and 

quantification of histology staining was done using Photoshop 6.0 (Adobe). The area of blue 

Hematoxylin staining, representing number of cells, was quantified by selecting and counting 

blue pixels (select, color range, blue, Image, Histogram). After deletion of the selected blue 

pixels, the area stained by the peroxidase substrate DAB was identified by selecting shadows 

(select, color range, shadows) and quantified by measuring the number of pixels (Image, 

Histogram). The area stained with tenascin was quantified using Simple PCI imaging software 

(Compix). 

Images in Fig. 1A are composites of images taken with a 4x objective. The colors were 

enhanced using Photoshop 6.0 (Adobe, adjust, auto levels).   

Scratch wound images were taken with air objectives  (4x Nikon objective, air, NA=0.1, 

equipped with Hoffman modulation Contrast optics) using a Nikon Eclipse TE300 microscope 

equipped with a Hamamatsu digital camera (Hamamatsu) and Simple PCI imaging software 

(Compix). Images of the wounds were acquired using a Conica/Minolta Dimage Z3 digital 

camera equipped with 12x optical zoom. The wound area was quantified using Simple PCI 

imaging software (Compix).  Immunofluorescent images of actin fluorescence (10x Nikon 

objective, air, NA=0.25) were also acquired using the Nikon Eclipse TE300 microscope and 

quantified using Photoshop 6.0 as above.  Confocal images were taken using a 63X oil objective  

(Zeiss, NA=1.4) with a Zeiss 510 LSM Meta Confocal microscope using LSM 5 imaging 



 23

software (Zeiss). Fluorescence intensity of images was measured using LSM 5 imaging software 

(Zeiss).  

Unless otherwise indicated in Figure Legends, comparisons between samples were 

assessed for statistical significance using a Student’s “T” test, p<0.05 was considered significant 

a significant difference and is marked with an asterisk.    
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ABBREVIATIONS 

bFGF-2  Basic fibroblast growth factor-2 

2D  2-dimensional culture 

3D  3-dimensional culture 

ECM  Extracellular matrix 

ERK1,2  Extracellular regulated kinases 1,2 

FAK   Focal adhesion kinase 

HA  Hyaluronic Acid / Hyaluronan 

Matrigel Basement membrane matrix 

MEFs  Mouse embryonic fibroblasts 

Mek1   Mitogen activated kinase kinase 1 

MMPs  Matrix metalloproteinases 

MW  Molecular weight 

Mwavg  Average molecular weight 

PDGF-BB Platelet derived growth factor-BB 

PDGFR  Platelet derived growth factor receptor 

PMNs  Polymorphonuclear cells 

Rhamm  Receptor for Hyaluronic Acid Mediated Motility 

RhFL  Full-length Rhamm 

Rh-/-  Rhamm -/- 

TE  Tris-EDTA 

TGF-β  Transforming growth factor-β 

TGF-βR Transforming growth factor-β receptor 

Wt  Wild-type 
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FIGURE LEGENDS 
 
 

Figure 1: Loss of Rhamm Delays and Alters the Pattern of Granulation Tissue Formation 

in Skin Wounds.  A.  Tenascin Protein Expression in Wound Sections:  Wound granulation 

tissue is abundant in day 7 Wt wounds as indicated by positive staining for tenascin.  Granulation 

tissue has largely resolved in Wt wounds by day 14 as indicated by restricted tenascin staining. 

The area of tenascin-positive Rh-/- granulation tissue is less in days 3 and 7 than Wt and has 

become aberrantly "patchy" by day 14, indicating delayed and abnormal patterning of 

granulation tissue resolution.  Paraffin processed tissue sections were prepared perpendicular to 

the wound surface and cut at the wound center then stained for tenascin as a marker for 

granulation tissue.   B.  Areas of Tenascin-Positive Granulation Tissue:  The area of Wt 

granulation tissue is significantly greater than Rh-/- at both day 3 and 7 after wounding (p<0.01 

for both time points).  High standard errors of tenascin-positive areas of Rh-/- granulation tissue 

reflect aberrant resolution patterns.  Values represent the Mean and S.E.M. N= 4 tissue sections 

from 8 male mice for each genotype.  

 

Figure 2:  Loss of Rhamm Reduces Fibroblast Density and Increases Granulation Tissue 

Cell Heterogeneity.  A.  Fibroblast Density in Granulation Tissue:  The density of fibroblasts is 

significantly reduced in Rh-/- granulation tissue at both day 3 (p<0.0001) and 7 (p<0.001) after 

wounding. Arrows indicate the presence of vacuolated cells, which are adipocytes.  Fibroblast 

density is heterogeneous in Rh-/- granulation tissue (e.g. dotted circle is sparse; filled line circle 

is dense) but fibroblast density shown in graph was averaged per microscope field. Paraffin 

processed tissue sections were stained for vimentin.  Values in graphs represent the Mean and 

S.E.M., N=4 sections from 8 animals for each genotype.  B. Smooth Muscle Actin-Positive 

Fibroblasts in Wounds: The number of wound myofibroblasts is significantly reduced in day 7 

Rh-/- wounds compared to Wt granulation tissue (p<0.0001). Paraffin processed tissue sections 

were stained for �smooth muscle actin as described in Methods. Values in graphs represent the 

Mean and S.E.M., N=4 sections from 8 animals for each genotype.  C. Smooth Muscle Actin- and 

Lipid-Positive Fibroblasts (Adipocytes) in Granulation Tissue Explants in Culture: The numbers 

of smooth muscle actin-positive fibroblasts are significantly reduced and the numbers of lipid-

containing cells are significantly increased in Rh-/- granulation wound tissue when compared to 

Wt (p<0.0001).  Cell outgrowths were stained with anti �smooth muscle actin and 
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BODIPY493/503 as described in Methods. In confocal images, red staining is smooth muscle 

actin and green staining is BODIPY493/503 taken up into lipid droplets within cells.  Laser 

settings were kept constant for Wt day 0 and Rh-/- day 0 images and for Wt day 7, Rh-/- day 7, 

IgG day 0 and acetone extracted day 0 images.  

     

Figure 3: Loss of Rhamm Alters ERK1,2 Activation in Granulation Tissue Fibroblasts. 

Both Wt and Rh-/- granulation tissue fibroblasts are positive for activated (phospho)-ERK1,2 at 

day 3 after wounding.  Staining for activated ERK1,2 significantly increases in Wt granulation 

tissue by day 7 (p<0.001), then drops by day 14.  In contrast, staining drops to near background 

in day 7 Rh-/- wound granulation tissue (p<0.00001), and remains significantly lower than Wt at 

day 14 (p<0.01). Paraffin sections were stained with anti-phospho-ERK1,2 antibodies. Staining 

was quantified using image analysis and averaged per unit area of granulation tissue as described 

in Methods. Values represent the Mean and S.E.M., N=15 images of 3 tissue sections for each 

genotype (5 mice each).  

 

Figure 4: Loss of Rhamm Reduces Serum Activation of ERK1,2 in Fibroblasts in culture.  

A. ELISA Analysis of Total Cellular Phospho-ERK1,2:  RhFL-rescued fibroblasts sustain 

significantly higher levels of ERK1,2 activity at 30-60 min post serum stimulation than Rh-/- 

fibroblasts. Phospho-ERK1,2 in serum starved RhFL-rescued  and Rh-/- fibroblasts exposed to 

serum were quantified as described in Methods. Values at 0 min were subtracted from values at 

30 and 60 min. Values represent the Mean and S.E.M., N=3 samples. B. Western Blot Analysis of 

Phospsho-ERK1:  RhFL-rescued fibroblasts sustain ERK1,2 activity between 10-50 min post 

serum stimulation while activity drops in Rh-/- fibroblast at 10 min. Anti-phospho-ERK1,2 

antibodies were used to detect active ERK1,2 in western blots.   C.  Confocal Micrographs and 

Image Analysis of Phospho-ERK1,2: Micrographs and image analysis of  RhFL-rescued  and Rh-

/- fibroblasts stained with anti-phospho-ERK1,2 antibodies confirm the significantly rapid drop 

in activated ERK1,2 observed in Rh-/- compared to RhFL-rescued  fibroblasts, and show that 

targeting of phospho-ERK1,2 (red fluorescence) to the nucleus (blue fluorescence) is also 

significantly reduced in Rh-/- fibroblasts. Micrographs are taken from one of 4 similar 

experiments.  
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Figure 5: Loss of Rhamm Reduces Migration and Invasion of Wt and Rh-/- Primary 

Fibroblasts A. Migration into Scratch Wounds in Response to FCS: Significantly more Wt 

fibroblasts migrate into 3mm wound gaps than Rh-/- fibroblasts (p<0.0001). Values represent the 

Mean and S.E.M., N=6 randomly chosen wound areas. Time-lapse analysis of wound edges 

shows that Wt fibroblasts migrate at a higher speed and for longer distances than Rh-/- 

fibroblasts over a 24 hr period (p<0.0001).  Values represent the Mean and S.E.M., N=3 

experiments. B.  Invasion into Collagen Gels in Response to PDGF: Diagram shows the 

construction of a collagen gel invasion assay where HA and PDGF-BB are present only in the 

central plug. A significantly greater number of Wt dermal fibroblasts migrate into central plugs 

than Rh-/- dermal fibroblasts (p<0.00001).  Values represent the Mean and S.E.M., N=4 

experiments.  

 

Figure 6: CD44 Protein Co-Associates with Rhamm and Active ERK1,2 in Fibroblasts A. 

CD44 Protein Expression: Rh-/- fibroblasts express similar levels of CD44 proteins as Wt, as 

assessed by western blot analysis. β-actin was used as a protein loading control. B. CD44 Protein  

Distribution:  Confocal analysis shows that CD44 (green fluorescence) is distributed in a similar 

pattern in both RhFL-rescued and Rh-/- fibroblasts but unlike Rh-/- fibroblasts, CD44 occurs 

predominantly within vesicles that co-associate with active ERK1,2 (red fluorescence) in Rh-/- 
Fl-rescued fibroblasts. Yellow fluorescence represents CD44 and phospho-ERK1,2 co-

localization. IgG was used as a negative control for anti CD44 and anti phospho-ERK1,2. C. 

Rhamm, CD44 and ERK1,2 Form Complexes: Recombinant Rhamm coupled to sepharose beads 

(Rh-GST-Beads) pulls down both CD44 standard form (CD44s), a possible CD44 variant form 

and ERK1,2. GST coupled to beads (GST Beads) is used as a negative control for both assays. 

CD44s and ERK1,2 were detected by western analysis. Confocal analysis confirms that Rhamm 

(red fluorescence) and CD44 (green fluorescence) co-localize (indicated by white enhancement) 

in Rh-/- Fl-rescued fibroblasts in cell processes of fibroblasts that were not permealized with 

detergent and in vesicles of detergent permealized fibroblasts.   

 

Figure 7: Cell Surface Rhamm (CD168) and CD44 are Required for ERK1,2 Activity and 

for Motility in Response to FCS and HA.  A. Role of CD168 (Rh) and CD44 in Nuclear 

ERK1,2 Activation.  RhammFL-rescued fibroblasts were serum starved then stimulated with FCS 

in the presence of non-immune IgG, anti-Rhamm or anti-CD44 antibodies.  Nuclear Phospho-
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ERK1,2 staining was detected with confocal microscopy and quantified with image analysis.  

Both anti-Rhamm and anti-CD44 significantly reduced the levels of phosph-ERK1,2 in the cell 

nucleus in response to serum. Values represent one of four experiments and are the Mean and 

Standard Error of N=25 cells from a single experiment.  B.  Rhamm-Rescued Cell Motility in 

Response to FCS: Expression of RhammFL cDNA rescues random motility of Rh-/- fibroblasts. 

Motility speed of Rh-/- fibroblasts, which did not vary with the indicated treatment is represented 

by the dotted line. Rescue of motility by RhammFL requires surface CD44 expression and 

ERK1,2 activity since anti-CD44 and the Mek1 inhibitor, UO126, significantly reduce migration. 

The ability of anti Rhamm ab to block both RhFL confirms the specificity of this RhammFL effect. 

The values represent the Mean and S.E.M., N=30 cells and are the results of 1 of 6 similar 

experiments. C. RhammFL-rescued Motility in Response to HA: In contrast to Wt, Rh-/- 

fibroblasts do not increase random motility in response to HA. Further, Rhamm antibodies 

reduce motility of Wt but not Rh-/- fibroblasts in the presence of HA.  Fibroblasts were first 

exposed to PMA to generate responsiveness to HA. The values represent the Mean and S.E.M., 

N=30 cells and are the results of 1 of 4 similar experiments. 

 

Figure 8: CD44 Cell Surface Display is ERK- and Cell Surface Rhamm-Dependent and 

Rhamm Promotes CD44/Phospho-ERK1,2 Co-Localization.  

A. Effect of Rhamm and ERK1,2 Activity on Cell Surface CD44 Expression: Loss of Rhamm  

reduces surface display  of CD44 compared to RhFl rescued fibroblast. The Mek1 inhibitor 

UO126 and anti-Rhamm antibody also block CD44 cell surface display in RhFl rescued 

fibroblasts. Recombinant Rhamm beads rescue CD44 cell surface expression on fibroblasts that 

touch or are close to the beads (arrows) indicating cell surface Rhamm is required for this 

Rhamm-dependent effect.  B. Effect of Rhamm on CD44 and Active ERK1,2 Co-localization: 

Image analyses of Confocal micrographs (e.g. Figure 6B) of serum starved fibroblasts 

subsequently exposed to serum show Rhamm expression significantly promotes co-localization 

of CD44 and active ERK1,2 as quantified by pixel density of yellow fluorescence.  Rhamm 

antibodies reduce this co-association in RhFL-rescued fibroblasts implicating cell surface 

Rhamm in this effect.  Values represent one of 4 similar experiments and are the Mean and 

Standard Error of N=25 cells.  
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Figure 9: Mutant Active Mek1 Rescues Aberrant ERK1,2 Activity, Motility and CD44 Cell 

Surface Display in Rhamm-/- Fibroblasts.   A. ELISA Analysis of ERK1,2 Activity:   

Expression of mutant active Mek1 in Rh-/- fibroblasts restores ERK1,2 activation (p< 0.05 for 

30 and 60 min) in response to serum stimulation and activity is not further increased by co-

expression of RhFL and mutant active Mek1. Phospho-ERK1,2 in serum starved Rh-/-, Mek1-

rescued and Mek1/RhFL-rescued fibroblasts exposed to serum was quantified as described in 

Methods. Values at 0 min were subtracted from values at 30 and 60 min. Values represent the 

Mean and S.E.M., N=3 samples. B.  Western Blot Analysis of ERK1 Activity: Western blot 

analyses confirms that expression of mutant active Mek1 rescues the ability of Rh-/- fibroblasts 

to activate ERK1.  C. Motility and Cell Surface CD44 Display in Rh-/- Fibroblasts Expressing 

Mutant Active Mek1: Expression of mutant active Mek1 in Rh-/- fibroblasts significantly 

increases random motility speed of Rh-/- fibroblasts.  Anti-CD44 signficantly significantly 

blocks migration of these Mek1-rescued Rh-/- fibroblasts. Values represent one of 3 similar 

experiments and are the Mean and S.E.M. of N=30 cells.  Expression of Mek1 also restores cell 

surface display of CD44 to levels comparable to RhFL-rescued fibroblasts, as assessed by live 

cell immunofluorescence.  The specificity of the anti-CD44 antibody is confirmed by lack of 

fluorescence in murine Rh-/- fibroblasts that also do not express CD44 (Rh-/- Cd44-/-).    

 

Figure 10: Cell Surface Rhamm Rescues Motility Defect of Rh-/- Fibroblasts. A. Cell 

Motility in Response to Recombinant Rhamm Beads: Random motility of Rh-/- fibroblasts 

increases significantly when cells contact recombinant Rhamm beads whereas treatment with 

control GST-beads has no effect. Graphs show Mean and S.E.M. of 30 cells. Rhamm-bead-

stimulated motility is similar to that of RhFL-rescued fibroblasts and also requires ERK1,2 

activity and CD44 expression.   B. ERK1,2 Activation in Response to Recombinant Rhamm 

Beads: ERK1,2 activation (red fluorescence) by Rh-/- fibroblasts in response to 10% FCS is 

significantly increased in cells exposed to recombinant Rhamm beads, compared to treatment 

with control GST-beads. Green fluorescence is CD44 staining.  Image analysis was used to 

measure active ERK1,2 fluorescence in the cell nucleus.  Values represent 1 of 3 similar 

experiments are are the Mean and Standard Error of N=25 cells.   

  

Supplemental Figure I. Rhamm Expression is Regulated During Early Phases of Wound 

Repair and Loss of Rhamm Reduces Wound Contraction. a. Rhamm Expression in 
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Excisional Wounds: Rhamm mRNA expression is transiently up-regulated following excisional 

skin injury. Rhamm mRNA was amplified by RT-PCR and PCR products were visualized by 

Southern analysis using a Rhamm-specific probe.  The band (arrow) represents the full-length 

Rhamm PCR product.  RT-PCR of β-actin mRNA was used as a loading control. b. Macroscopic 

Quantification of Wound Contraction:  Analyses of excisional areas from photographs of 

wounds show that Wt wounds contract more rapidly than Rh-/- wounds with a significant 

difference observed at day 3 after wounding (p<0.05).  The circled area denotes forming 

granulation tissue, which is reduced in Rh-/- vs. Wt wounds.  c. Microscopic Quantification of 

Wound Contraction.  Analyses of tissue sections of wounds reveal a significant reduction in 

contraction at day 1 (p<0.0001), day 3 (p<0.05) and day 13 (p<0.001) in Rh-/- vs. Wt wounds.  

Wound contraction was measured as the distance between the edges of each wound site using 

tissue sections cut at the center of the excisional wound.  Values represent the Mean and S.E.M. 

of 3 sections from 3 wounds of each genotype. 

 

Supplemental Figure II.  Loss of Rhamm Expression Results in Aberrant Dermal Structure 

and Thickness in Both Uninjured and Repaired Skin.    a. Dermis of Uninjured Skin: The 

dermis of uninjured Wt skin (day 0) is significantly thicker than uninjured Rh-/- skin (p<0.0001). 

Sections were stained with Masson’s Trichrome.  b. Dermis of Resolved Wounds: The dermis at 

both the center and edges of Wt wounds at day 21 are resolved in that histology is similar to 

uninjured skin.   Wt dermis is significantly thinner than Rh-/- wounds (p< 0.0001 and p<0.01).  

Rh-/- wounds have not fully resolved and wound site exhibits reduced dermal differentiation 

compared to Wt wounds (e.g. hair follicles have not formed shafts, subcutaneous lipid layer is 

not formed and muscle layer is not continuous at the underside of wounds).  Paraffin-processed 

tissue sections were stained with Mason’s trichrome to visualize dermal collagen (a, green stain) 

or hematoxylin/eosin to visualize cells (b).  The thickness of the dermal layer was measured as 

the distance between the keratinocyte layer and the subcutaneous fat layer. Solid arrowheads 

mark the still discernable wound site in Rh-/- skin.  Solid arrows mark undifferentiated hair 

follicles and open arrow heads indicate ongoing fibroplasia and incomplete muscle formation 

observed at the underside of Rh-/- wounds. Values represent the Mean and S.E.M. of 5 areas 

from 3 separate tissue sections for each experimental condition. 
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Figure 2.  (Tolg et al.)  Loss of Rhamm Reduces Fibroblast Density and  Increases Granulation Tissue Cell Heterogeneity    
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C.  Confocal Micrographs and image analysis of Phospho ERK1,2

Figure 4.  (Tolg et al.)  Loss of Rhamm Reduces Serum Activation of ERK1,2 in  Fibroblasts in culture
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Figure 5.  (Tolg et al.)   Loss of Rhamm Reduces Migration and Invasion of Wt and Rh-/- Primary Fibroblasts 
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Figure 6.  (Tolg et al.)  CD44 Protein Co-Associates with Rhamm and Phospho-ERK1,2 in fibroblasts
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Figure 8. (Tolg et al.)  CD44 Cell Surface Display is ERK- and Cell Surface Rhamm- Dependant and Rhamm Promotes CD44/Phospho ERK 1, 2 
Colocalization. 
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Figure 9.  (Tolg et al.)  Mutant Active Mek1 Rescues Aberrant ERK1,2 Activity, Motility and CD44 cell surface display  in Rhamm-/- Fibroblasts
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Figure 10. (Tolg et al.)  Cell Surface Rhamm Rescues Motility Defect of Rhamm-/- Fibroblasts

0

2

4

6

8

10

12

14

16

R
h

-/-
C

on
ta

ct
 

W
ith

 B
ea

ds

N
o 

R
h

-/-
C

on
ta

ct
 

W
ith

 B
ea

ds

M
ot

ili
ty

 S
pe

ed
 (u

m
/h

r)
*

B. ERK1,2 Activation in Response to Recombinant 
Rhamm Beads 

Rh-/- + Rhamm-Beads

20μm

Rh-/- + GST-Beads

20μm

A. Cell Motility in Response to Recombinant Rhamm Beads

0

2

4

6

8

10

12

14

M
ot

ili
ty

 S
pe

ed
 (u

m
/h

r)

R
h

-/-

R
h

-/-
+ 

G
S

T-
B

ea
ds

R
h

-/-
+ 

R
h-

B
ea

ds

R
hF

L
-

R
es

cu
ed

R
h/

C
D

44
-/-

R
h/

C
D

44
-/-

+R
h

B
ea

ds

R
h

-/-
+ 

R
h-

B
ea

ds
 +

U
O

 1
26

R
h

-/-
+ 

R
h-

B
ea

ds
 +

C
D

44
 A

b

0

20

40

60

80

100

120

140

10 min 30 min 

P
ix

el
 D

en
si

ty

R
h-

B
ea

ds

G
S

T-
B

ea
ds

*

*

R
h-

B
ea

ds

G
S

T-
B

ea
ds

* *

*

* *
*



c.  Microscopic Quantification of Wound Contraction
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Supplemental Figure I.  (Tolg et al.) Rhamm Expression is Regulated During Early Phases of Wound Repair and Loss of Rhamm Reduces Wound 
Contraction.
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Supplemental Figure II. (Tolg et al.) Loss of Rhamm Expression Results in Aberrant Dermal Structure and Thickness in Both Uninjured and Repaired 
Skin
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